【Linux取经路】文件系统之缓冲区

在这里插入图片描述

文章目录

  • 一、先看现象
  • 二、用户缓冲区的引入
  • 三、用户缓冲区的刷新策略
  • 四、为什么要有用户缓冲区
  • 五、现象解释
  • 六、结语

一、先看现象

#include <stdio.h>
#include <string.h>
#include <unistd.h>int main()
{const char* fstr = "Hello fwrite\n";const char* str = "Hello write\n";printf("Hello printf\n");fprintf(stdout, "Hello fprintf\n");fwrite(fstr, strlen(fstr), 1, stdout); // 返回值是写入成功的快数write(1, str, strlen(str)); // 返回值是写入成功的字节数// fork();return 0;
}

在这里插入图片描述
结构分析:带 fork 的输出重定向最终把有一些内容向 log.txt 文件中写入了多次,并且打印顺序也有所不同。

int main()
{const char* fstr = "Hello fwrite";const char* str = "Hello write";printf("Hello printf");fprintf(stdout, "Hello fprintf");fwrite(fstr, strlen(fstr), 1, stdout); // 返回值是写入成功的快数close(1);// write(1, str, strlen(str)); // 返回值是写入成功的字节数// fork();return 0;
}

在这里插入图片描述
结果分析:代码中只使用了库函数向显示器中进行写入,并且在字符串的结尾没有加 \n,在最后面将标准输出对应的文件描述符进行了关闭,最终显示器上什么也没有。上一段代码在字符串的结尾加上了 \n 最终字符串被成功的打印到了屏幕上。

int main()
{const char* str = "Hello write";write(1, str, strlen(str)); // 返回值是写入成功的字节数close(1);return 0;
}

在这里插入图片描述
结果分析:字符串的结尾依然不加 \n,但是这一次采用系统调用接口,最后仍然将标准输出对应的文件描述符进行关闭,这一次字符串被成功的打印了出来。

二、用户缓冲区的引入

write 为什么能将不带 \n 的字符串写入到显示器文件中。首先我们需要明确一点进程打开的每一个文件都有一个属于自己的操作系统级别的文件缓冲区,该缓冲区的存在,可以减少对外设的读写操作以提高计算机的效率。举个栗子,在一个进程中向磁盘里的同一个文件进多次行写入,文件缓冲区的存在,可以将每次写入的内容先存储在文件缓冲区中,最后在程序退出或者调用 close 的时候,一次性将文件缓冲区中的所有内容刷新到磁盘。如果没有该文件缓冲区,那在进程里对文件进行 n 次写操做,就要对应 n 次向磁盘的写操作,CPU 和外设之间是存在非常大的速度差的,这样效率会非常低。

write 作为系统调用接口,它就是直接向文件缓冲区中写入,最后在调用 close 接口或者程序退出的时候,会将文件缓冲区的内容刷新到对应的外设中。

printffprintffwrite 底层一定是封装了 write 系统调用接口,那为什么使用 write 系统调用接口就可以将字符串写入到显示器,使用 C 库函数没能把字符串写入到显示器文件?原因在进度条的那篇文章中讲过,我们使用的这些 C 库函数,是把字符串写入到了缓冲区中,这个缓冲区和上面的文件缓冲区有所不同,这里说的缓冲区是 C 语言给我们提供的语言层面的缓冲区,也叫做用户级缓冲区\n 具有刷新用户级缓冲区的作用,因此不加 \n 并且在程序结束前将显示器对应的文件描述符进行了关闭,最终就导致字符串在用户级缓冲区中,没有被刷新到文件缓冲区,所以屏幕上就什么也没有。这里我们可以肯定,在这些 C 库函数中,并不是立即调用 write 接口,而是在遇到 \n 后才去调用 write 接口将用户缓冲区的内容刷新到文件缓冲区中。

在这里插入图片描述

总结:使用 C 系统调用接口向文件中写入,写入的内容先被存储在用户缓冲区中,在合适的时候(遇到 \n)才会进行刷新,这里刷新的本质是调用 write 将数据从用户缓冲区写入内核。

之前说的 exit 会刷新缓冲区,其实就是刷新用户缓冲区,因为 exit 作为 C 库函数,可以看见用户缓冲区,而 _exit 作为系统调用接口,无法看到语言层面的用户缓冲区,因此也就无法刷新用户缓冲区。

三、用户缓冲区的刷新策略

  • 无缓冲:直接刷新,数据不在用户缓冲区中停留。

  • 行缓冲:不刷新,直到碰到 \n

  • 全缓冲:缓冲区满了才刷新。

所谓刷新就是调用 write 接口将数据写入操作系统中的文件缓冲区。显示器文件对应采用的就是行缓冲,向磁盘文件中写入采用的是全缓冲。进程在退出的时候也会刷新用户缓冲区,还可以调用 fflush 进行刷新。

四、为什么要有用户缓冲区

  • 解决效率问题,缓冲区就像菜鸟驿站,不需要我们自己坐火车坐飞机去送东西,而是直接交给菜鸟驿站,然后就可以干自己的事情了,菜鸟驿站可以选择攒上一大批快递然后统一寄送出去。用户缓冲区的存在本质上提高了 C 语言的效率,也就是提高了用户的效率,因为 C 语言是程序员在使用,在使用 C 库函数进行文件写入时,大部分情况只需要把数据交给缓冲区,然后就可以快速的返回,不需要每一次都亲力亲为的去和操作系统打交道。

  • 配合格式化,有些和文件写入相关的 C 库函数是格式化输出函数,在我们看来,它可以写入整形、符点型,但是最终都是以字符串的形式进行写入。格式化就是将类型全都转化成字符串,先写入到用户缓冲区,用户缓冲区中存的一定都是字符串。

用户缓冲区,有进也有出,将数据写入到用户缓冲区中就就叫做进,将用户缓冲区中的数据刷新到内核中的文件缓冲区中,被刷新的数据就可以从用户缓冲区中删掉,这就叫做出。用户缓冲就像就像水流一样源源不断,流的概念就是因此而来。

小TipsFILE 里面就有对应打开文件的缓冲区字段和维护信息。每个被进程打开文件都有自己对应的文件缓冲区。FILE 对象属于用户,用户缓冲区可以看作是在堆上申请的一块空间。

五、现象解释

这下再来解释上面代码中有 fork 然后重定向,写入了多次的原因。首先重定向后,将本来向显示器文件写入的内容,写到了磁盘文件,显示器文件的缓冲区采用行缓冲,即遇到 \n 就会刷新,而磁盘文件采用的是全缓冲,当缓冲区满了才刷新。因此在重定向后,会把三条 C 库函数写入的内容全部保存到缓冲区中,然后调用 fork 创建子进程,此时父子进程代码共享,数据写时拷贝,在程序退出的时候回去刷新用户缓冲区,上面说过,刷新就是将用户缓冲区中的数据写入到内核,然后将用户缓冲区中的内容清空,上面还说过,缓冲区就是在堆上申请的一段空间,可以看作数据部分,因为要删除数据,所以就会进行写时拷贝,此时之前父进程用户缓冲区中的内容就会给子进程拷贝一份,然后父子进程都执行刷新动作,各自刷新自己的缓冲区数据,这就是为什么最终出现多份的原因。没有重定向,只向显示器打印四条消息,是因为显示器采用的是行刷新策略,在调用 fork 前,对应的字符串就已经被刷新出去了。在 fork 的时候,父进程的用户缓冲区中是空的,什么也没有。

磁盘文件全缓冲验证

int main()
{const char* fstr = "Hello fwrite\n";const char* str = "Hello write\n";printf("Hello printf\n");sleep(2);fprintf(stdout, "Hello fprintf\n");sleep(2);fwrite(fstr, strlen(fstr), 1, stdout); // 返回值是写入成功的快数sleep(2);write(1, str, strlen(str)); // 返回值是写入成功的字节数sleep(5);fork();return 0;
}

在这里插入图片描述
分析:最先将 write 内容写入到文件中,因为它是直接写入到文件缓冲区,而剩下的 C 库函数对应的内容是统一一次全部刷新到内核,即使每个字符串后面都有 \n,但最后还是统一全部刷新,这就证明了磁盘文件采用的是全刷新策略。

六、结语

今天的分享到这里就结束啦!如果觉得文章还不错的话,可以三连支持一下,春人的主页还有很多有趣的文章,欢迎小伙伴们前去点评,您的支持就是春人前进的动力!

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/485713.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

使用k-近邻算法改进约会网站的配对效果(kNN)

目录 谷歌笔记本&#xff08;可选&#xff09; 准备数据&#xff1a;从文本文件中解析数据 编写算法&#xff1a;编写kNN算法 分析数据&#xff1a;使用Matplotlib创建散点图 准备数据&#xff1a;归一化数值 测试算法&#xff1a;作为完整程序验证分类器 使用算法&…

vulvhub-----Hacker-KID靶机

打靶详细教程 1.网段探测2.端口服务扫描3.目录扫描4.收集信息burp suite抓包 5.dig命令6.XXE漏洞读取.bashrc文件 7.SSTI漏洞8.提权1.查看python是否具备这个能力2.使用python执行exp.py脚本&#xff0c;如果提权成功&#xff0c;靶机则会开放5600端口 1.网段探测 ┌──(root…

C# .Net 发布后,把dll全部放在一个文件夹中,让软件目录更整洁

PublishFolderCleaner – Github 测试环境: .Net 8 Program.cs 代码 // https://github.com/dotnet-campus/dotnetcampus.DotNETBuildSDK/tree/master/PublishFolderCleanerusing System.Diagnostics; using System.Text;// 名称, 不用写 .exe var exeName "AbpDemo&…

基于Spring Boot+Mybatis+Shiro+EasyUI的宠物医院管理系统

项目介绍 本系统前台面向的用户是客户&#xff0c;客户可以进行预约、浏览医院发布的文章、进入医院商城为宠物购物、如有疑问可以向官方留言、还可以查看关于自己的所有记录信息&#xff0c;如&#xff1a;看病记录、预约记录、疫苗注射记录等。后台面向的用户是医院人员&…

一些可以参考的文档集合16

之前的文章集合: 一些可以参考文章集合1_xuejianxinokok的博客-CSDN博客 一些可以参考文章集合2_xuejianxinokok的博客-CSDN博客 一些可以参考的文档集合3_xuejianxinokok的博客-CSDN博客 一些可以参考的文档集合4_xuejianxinokok的博客-CSDN博客 一些可以参考的文档集合5…

个人网站如何调用微信公司的登录接口,实现微信登录

个人网站如何调用微信公司的登录接口,实现微信登录&#xff01;如果你个人网站想使用微信公司的登录接口&#xff0c;目前是需要收费的&#xff0c;微信公司登录接口不再是免费的了。需要缴纳认证费&#xff0c;每年认证费是300元/年。才能调用微信的登录接口。 如图&#xff0…

FairyGUI × Cocos Creator 3.x 使用方式

前言 上一篇文章 FariyGUI Cocos Creator 入门 简单介绍了FairyGUI&#xff0c;并且按照官方demo成功在Cocos Creator2.4.0上运行起来了。 当我今天使用Creator 3.x 再引入2.x的Lib时&#xff0c;发现出现了报错。 这篇文章将介绍如何在Creator 3.x上使用fgui。 引入 首先&…

安泰高压放大器用途有哪些呢

高压放大器是一种功能强大的放大器&#xff0c;其广泛的用途使其在众多领域中发挥着重要作用。下面安泰电子将详细介绍高压放大器的用途和应用场景。 实验室仪器&#xff1a;在科研实验室中&#xff0c;高压放大器通常用于各种实验设备中&#xff0c;如光谱仪、质谱仪、电化学分…

【Appium UI自动化】pytest运行常见错误解决办法

通过Appium工具录制代码在pycharm上运行报错&#xff1a; 错误一&#xff1a; 1.提示 setup() 方法运行 error failed 解决办法&#xff1a;未创建 init __ 方法&#xff0c;创建一个空的__init.py文件就解决了。 原因&#xff1a; 错误二&#xff1a; 2.运行代码&#xff…

如何进行非线性负载测试?

非线性负载测试是模拟真实用户行为和系统性能的测试方法&#xff0c;它可以帮助我们发现系统在高并发、高负载情况下的性能瓶颈和潜在问题。以下是进行非线性负载测试的一些建议&#xff1a; 在进行非线性负载测试之前&#xff0c;首先要明确测试的目标&#xff0c;例如测试系统…

ESP8266智能家居(3)——单片机数据发送到mqtt服务器

1.主要思想 前期已学习如何用ESP8266连接WIFI&#xff0c;并发送数据到服务器。现在只需要在单片机与nodeMCU之间建立起串口通信&#xff0c;这样单片机就可以将传感器测到的数据&#xff1a;光照&#xff0c;温度&#xff0c;湿度等等传递给8266了&#xff0c;然后8266再对数据…

NATS学习笔记(一)

NATS是什么&#xff1f; NATS是一个开源的、轻量级、高性能的消息传递系统&#xff0c;它基于发布/订阅模式&#xff0c;由Apcera公司开发和维护。 NATS的功能 发布/订阅&#xff1a;NATS的核心是一个发布/订阅消息传递系统&#xff0c;允许消息生产者发布消息到特定的主题…

ONLYOFFICE 桌面应用程序 v8.0 发布:全新 RTL 界面、本地主题、Moodle 集成等你期待的功能来了!

目录 &#x1f4d8; 前言 &#x1f4df; 一、什么是 ONLYOFFICE 桌面编辑器&#xff1f; &#x1f4df; 二、ONLYOFFICE 8.0版本新增了那些特别的实用模块&#xff1f; 2.1. 可填写的 PDF 表单 2.2. 双向文本 2.3. 电子表格中的新增功能 单变量求解&#xff1a;…

核密度分析

一.算法介绍 核密度估计&#xff08;Kernel Density Estimation&#xff09;是一种用于估计数据分布的非参数统计方法。它可以用于多种目的和应用&#xff0c;包括&#xff1a; 数据可视化&#xff1a;核密度估计可以用来绘制平滑的密度曲线或热力图&#xff0c;从而直观地表…

nginx服务基础用法(概念、安装、热升级)

目录 一、I/O模型概述 1、I/O概念 1.1 计算机的I/O 1.2 Linux的I/O 2、零拷贝技术 3、同步/异步&#xff08;消息反馈机制&#xff09; 4、阻塞/非阻塞 5、网络I/O模型 5.1 阻塞型 I/O 模型&#xff08;blocking IO&#xff09; 5.2 非阻塞型 I/O 模型 (nonblocking …

基于Android的记单词App系统的研究与实现,附附源码

博主介绍&#xff1a;✌程序员徐师兄、7年大厂程序员经历。全网粉丝12w、csdn博客专家、掘金/华为云/阿里云/InfoQ等平台优质作者、专注于Java技术领域和毕业项目实战✌ &#x1f345;文末获取源码联系&#x1f345; &#x1f447;&#x1f3fb; 精彩专栏推荐订阅&#x1f447;…

超级实用的python代码片段汇总和详细解析(16个)

目录 1. 生成随机文本 2. 计算文本文件中的字数 3. 替换文件文件中的字串 4. 多文件名的批量替换 5. 从网站提取数据 6. 批量下载图片 7.批量删除空文件夹 8.Excel表格读写 9.合并Excel表格工作簿 10.数据库SQL查询 11. 系统进程查杀 12.图像尺寸调整和裁剪 13.图…

数据湖Iceberg、Hudi和Paimon比较

1.社区发展现状 项目Apache IcebergApache HudiApache Paimon开源时间2018/11/62019/1/172023/3/12LicenseApache-2.0Apache-2.0Apache-2.0Github Watch1481.2k70Github Star5.3k4.9k 1.7k Github Fork1.9k2.3k702Github issue(Open)898481263Github issue(closed)20542410488…

2.22 Qt day3 多界面跳转+qss登录界面优化+发布软件+对话框

思维导图&#xff1a; 完善对话框&#xff0c;点击登录对话框&#xff0c;如果账号和密码匹配&#xff0c;则弹出信息对话框&#xff0c;给出提示”登录成功“&#xff0c;提供一个Ok按钮&#xff0c;用户点击Ok后&#xff0c;关闭登录界面&#xff0c;跳转到其他界面 如果账号…

C# Onnx 使用onnxruntime部署实时视频帧插值

目录 介绍 效果 模型信息 项目 代码 下载 C# Onnx 使用onnxruntime部署实时视频帧插值 介绍 github地址&#xff1a;https://github.com/google-research/frame-interpolation FILM: Frame Interpolation for Large Motion, In ECCV 2022. The official Tensorflow 2…