Python实现时间序列ARIMA模型(附带超详细理论知识和完整代码实现)

文章目录

  • 0 结果
  • 1 介绍
  • 2 建模
    • 2.1 预备知识
      • 2.1.1 ADF检验结果(单位根检验统计量)
      • 2.1.2 差分序列的白噪声检验(这里使用Ljung-Box检验)
      • 2.1.3 ARIMA模型(差分整合移动平均自回归模型)的三个参数:p,d,q
      • 2.1.4 自相关和偏自相关(用于识别ARMA模型)
      • 2.1.5 AIC与BIC(用于确定p,q参数)
      • 2.1.6 模型检验(残差检验, QQ图,Jarque-Bera检验,D-W检验)
    • 2.2 建模详细过程
  • 3 模型代码实现
    • 3.1 详细步骤
    • 3.2 完整代码
  • 4 测试数据和完整代码
  • 参考文章

0 结果

请添加图片描述
在这里插入图片描述

1 介绍

时间序列分析的基本思想:寻找系统的当前值与其过去的运行记录(观察数据)的关系,建立能够比较精确地反映时间序列中动态依存关系的数学模型,并借此对系统的未来行为进行预报。

ARIMA模型(Autoregressive Integrated Moving Average model,差分整合移动平均自回归模型,又称整合移动平均自回归模型(移动也可称作滑动)),是时间序列预测分析方法之一。ARIMA(p,d,q)中,AR是“自回归”,p为自回归项数;MA为“滑动平均”,q为滑动平均项数,d为使之成为平稳序列所做的差分次数(阶数)。“差分”一词虽未出现在ARIMA的英文名称中,却是关键步骤。

该模型十分简单,只需要带有时间的变量,但是
1.要求时序数据是稳定的(stationary),或者是通过差分化(differencing)后是稳定的。
2.本质上只能捕捉线性关系,而不能捕捉非线性关系。

注意⚠️:采用ARIMA模型预测时序数据,必须是稳定的,如果不稳定的数据,是无法捕捉到规律的。比如股票数据用ARIMA无法预测的原因就是股票数据是非稳定的,常常受政策和新闻的影响而波动。

2 建模

2.1 预备知识

2.1.1 ADF检验结果(单位根检验统计量)

ADF检验结果作用:

  • 1,ADF检验是一种检验时间序列是否平稳的方法,其原假设是存在单位根,即非平稳。根据ADF检验的结果,可以通过比较检验统计量和临界值,以及p值和显著性水平,来判断是否拒绝原假设。
  • 2,如果拒绝原假设,可以认为数据是平稳的;如果不拒绝原假设,可以认为数据是非平稳的,需要进行差分后再检验
  • 3,另外,还需要根据不同的模型,判断数据是趋势平稳、截距平稳还是不含截距和时间趋势的平稳。

ADF检验结果的五个参数含义:

  • 第一个参数:adt检验的结果,简称为T值,表示t统计量。

  • 第二个参数:简称为p值,表示t统计量对应的概率值。p值表示在原假设(零假设)的条件下,样本发生或观测值出现的概率。若p值小于小概率事件的阈值(0.05或0.01),那么拒绝原假设(即数据是平稳的),否则接受原假设。

    • 若P<0.01,说明是较强的判定结果,拒绝假定的参数取值;若0.01<P<0.05,说明较弱的判定结果,拒绝假定的参数取值;若P>0.05,说明结果更倾向于接受假定的参数取值。
  • 第三个参数:滞后阶数,时间序列中的滞后阶数指的是当前数据点与前面的几个数据点之间的时间间隔数量。

    • 如果滞后阶数选择得太低,那么模型可能无法捕捉时间序列的所有重要特征,导致预测精度不够高;
    • 如果滞后阶数选择得太高,那么模型就会过于复杂,过度拟合训练数据,从而无法泛化到新的数据上。
  • 第四个参数:AIC(赤池信息量准则)衡量统计模型拟合优良性的一种标准,选取AIC最小的模型。

    • 它建立在熵的概念上,提供了权衡估计模型复杂度和拟合数据优良性的标准。
    • 模型选择是在模型复杂度与模型对数据集描述能力(即似然函数)之间寻求最佳平衡。
    • 很多参数估计问题均采用似然函数作为目标函数,当训练数据足够多时,可以不断提高模型精度,但提高了模型复杂度,同时带来过拟合的问题。
  • 配合第一个参数一起看的,是在99%,95%,90%置信区间下的临界的ADF检验值。

下面为程序示例返回的ADF检验结果:

原始序列的ADF检验结果为: (
-1.065623530928928, 
0.7285844104901973, 
11, 
43, 
{'1%': -3.5925042342183704, '5%': -2.931549768951162, '10%': -2.60406594375338}, 922.2003862834713)

观察角度:

  • 1,由第二个参数可得p值为0.7285844104901973,无法拒绝原假设,即数据不稳定。
  • 2,由第一个参数可得T值为-1.065623530928928,由第五个参数结合第一个参数可得-1.065623530928928大于'10%': -2.60406594375338,即接受原假设,数据不稳定。

2.1.2 差分序列的白噪声检验(这里使用Ljung-Box检验)

作用:白噪声序列有个特点,任意两项的协方差/相关性系数都是零,也就是说任意不同的两项之间不存在相关性关系。 如果一个时间序列是白噪声,那么就不具有分析的意义,因为从一个纯随机的东西中找不出任何有价值的规律。

参数说明:

  • lbvalue:测试的统计量
  • pvalue:基于卡方分布的p统计量
    • 如果pvalue值大于0.05,就说明我们无法拒绝原假设(该序列是白噪声序列),这个时间序列的确就是白噪声序列。

示例:

差分序列的白噪声检验结果为:      lb_stat     lb_pvalue
1  33.952495  5.647422e-09

这里得到的p值为5.647422e-09,即拒绝原假设,序列不是白噪声。

2.1.3 ARIMA模型(差分整合移动平均自回归模型)的三个参数:p,d,q

p:代表预测模型中采用的时序数据本身的滞后数(lags) ,也叫做AR/Auto-Regressive项
d:代表时序数据需要进行几阶差分化,才是稳定的,也叫Integrated项。
q:代表预测模型中采用的预测误差的滞后数(lags),也叫做MA/Moving Average项

ARIMA模型的特例:
1,ARIMA(0,1,0) :(此时当d=1,p和q为0时,称为random walk模型,)该模型表示每一个时刻的位置,只与上一时刻的位置有关。
2,ARIMA(1,0,0) ,(此时p=1, d=0,q=0,称为 first-order autoregressive model)该模型说明时序数据是稳定的和自相关的。
3,ARIMA(1,1,0),(此时p=1,d=1,q=0,称为differenced first-order autoregressive model) ,该模型说明时序数据在一阶差分化之后是稳定的和自回归的,即一个时刻的差分(y)只与上一个时刻的差分有关。
4,ARIMA(0,1,1) ,(此时p=0, d=1 ,q=1,称为simple exponential smoothing with growth模型)=该模型说明数据在一阶差分后是稳定的和移动平均的,即一个时刻的估计值的差分与上一个时刻的预测误差有关。

2.1.4 自相关和偏自相关(用于识别ARMA模型)

1,作用:自相关和偏自相关用于测量当前序列值和过去序列值之间的相关性,并指示预测将来值时最有用的过去序列值。

2,区别自相关函数和偏自相关函数

  • 自相关函数 (ACF):延迟为 k 时,这是相距 k 个时间间隔的序列值之间的相关性。
  • 偏自相关函数 (PACF):延迟为 k 时,这是相距 k 个时间间隔的序列值之间的相关性,同时考虑了间隔之间的值。

3,自相关图和偏自相关图:

  • 自相关图:有助于判断时间序列数据是否存在季节性或周期性变化,并且可以用来选择合适的时间序列模型。如果一个时间序列数据存在季节性变化,则其自相关图通常会呈现出明显的周期性模式。
  • 偏自相关图:可以帮助我们确定时间序列数据中的短期相关性,从而选择合适的时间序列模型。如果一个时间序列数据存在短期相关性,则其偏自相关图通常会显示出急速衰减的模式。

4,区别:截尾和拖尾

  • 截尾:在大于某个常数k后快速趋于0为k阶截尾
  • 拖尾:始终有非零取值,不会在k大于某个常数后就恒等于零(或在0附近随机波动)

请添加图片描述

观察自相关图和偏自相关图,然后根据如下表选择模型:
请添加图片描述

2.1.5 AIC与BIC(用于确定p,q参数)

贝叶斯信息准则(Bayesian Information Criterion,BIC):与AIC相似,用于模型选择BIC的惩罚项比AIC的大,考虑了样本数量,样本数量过多时,可有效防止模型精度过高造成的模型复杂度过高。

区别:

  • 1,AIC=2k−2ln(L)BIC=kln(n)−2ln(L)
  • 2,当n ≥ 102时,kln(n)≥2k,所以BIC相比AIC在大数据量时对模型参数惩罚得更多,导致BIC更倾向于选择参数少的简单模型。

2.1.6 模型检验(残差检验, QQ图,Jarque-Bera检验,D-W检验)

  • 残差检验:如果残差(残差 = 实际观测值 – 模型预测值)是正态分布,我们就可以认为他是随机的,如果它是随机的就可以认为它是对随机误差比较好的拟合;
  • QQ图:检验残差是否满足正态分布;
  • Jarque-Bera检验(雅克-贝拉检验): 判断数据是否符合总体正态分布;
    • P值<指定水平0.05,拒绝原假设,认为样本数据在5%的显著水平下不服从正态分布;
    • 适用于 样本数量大于30 ,而且样本数越多,JB检验效果越准确。
  • 利用D-W检验(残差序列自相关):检验残差的自相关性;
    • 一般DW值在2附近(比如1.7-2.3之间),则说明没有自相关性,模型构建良好;

例子:

------------残差检验-----------
NormaltestResult(statistic=4.4959826117374515, pvalue=0.10561115214326909)------------Jarque-Bera检验-----------
Jarque-Bera test:
JB: 4.0642468241648775
p-value: 0.13105693759455012
Skew: 0.33412880151714236
Kurtosis: 4.151920700073933------DW检验:残差序列自相关----
1.71022123825392

2.2 建模详细过程

1)对数据绘图,进行 ADF 检验,观察序列是否平稳(一般为不平稳);对于非平稳时间序列要先进行d阶差分运算,化为平稳时间序列;
2)对平稳时间序列进行白噪声检验,如果不是白噪声序列,则继续下面的建模;
3)使用AIC和BIC准则定阶q和p的值;

  • 或者是p 值可从偏自相关系数(PACF)图的最大滞后点来大致判断,q 值可从自相关系数(ACF)图的最大滞后点来大致判断,得到最佳的阶数 p 和阶数 q;
  • 或者是使用BIC矩阵来计算q和p的值;
    4)由以上得到的d、q、p得到ARIMA模型;
    5)最后对进行模型检验,例如残差检验,D-W检验(残差序列自相关)。

3 模型代码实现

3.1 详细步骤

1,引入头文件

from __future__ import annotations
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import statsmodels.api as sm
from statsmodels.tsa.stattools import adfuller as ADF
from statsmodels.stats.diagnostic import acorr_ljungbox
from statsmodels.graphics.tsaplots import plot_acf, plot_pacf #ACF与PACF
from statsmodels.tsa.arima.model import ARIMA #ARIMA模型
from statsmodels.graphics.api import qqplot  #qq图
from scipy import stats

2,把原始数据转为pandas.core.frame.DataFrame的数据进行操作,

  • 直接从字典转换:
# dict类型的原始数据
need_data = {'2016-02': 44964.03, '2016-03': 56825.51, '2016-04': 49161.98, '2016-05': 45859.35, '2016-06': 45098.56, '2016-07': 45522.17, '2016-08': 57133.18, '2016-09': 49037.29, '2016-10': 43157.36, '2016-11': 48333.17, '2016-12': 22900.94,'2017-01': 67057.29, '2017-02': 49985.29, '2017-03': 49771.47, '2017-04': 35757.0, '2017-05': 42914.27, '2017-06': 44507.03, '2017-07': 40596.51, '2017-08': 52111.75, '2017-09': 49711.18, '2017-10': 45766.09, '2017-11': 45273.82, '2017-12': 22469.57,'2018-01': 71032.23, '2018-02': 37874.38, '2018-03': 44312.24, '2018-04': 39742.02, '2018-05': 43118.38, '2018-06': 33859.69, '201807': 38910.89, '2018-08': 39138.42, '2018-09': 37175.03, '2018-10': 44159.96, '2018-11': 46321.72, '2018-12': 22410.88,'2019-01': 61241.94, '2019-02': 31698.6, '2019-03': 44170.62, '2019-04': 47627.13, '2019-05': 54407.37, '2019-06': 50231.68, '2019-07': 61010.29, '2019-08': 59782.19, '2019-09': 57245.15, '2019-10': 61162.55, '2019-11': 52398.25, '2019-12': 15482.64,'2020-01': 38383.97, '2020-02': 26943.55, '2020-03': 57200.32, '2020-04': 49449.95, '2020-05': 47009.84, '2020-06': 49946.25, '2020-07': 56383.23, '2020-08': 60651.07}
# 转换为Dataframedata = {'time_data': list(need_data.keys()), 'click_value_rate': list(need_data.values())}df = pd.DataFrame(data)df.set_index(['time_data'], inplace=True) # 设置索引data = df
  • 从excel中数据转换:
path = '/Users/mac/Downloads/时间序列模型测试数据.xlsx'
df=pd.read_excel(path)
# 更改列名
df.rename(columns={'data':'deal_data', 'time':'time_data'}, inplace = True)
# 设置索引
df.set_index(['time_data'], inplace=True)data = df

3, 对原始数据进行绘图;

    # 绘制时序图plt.rcParams['font.sans-serif'] = ['Arial Unicode MS'] # 用来正常显示中文标签# plt.rcParams['font.sans-serif'] = ['SimHei']plt.rcParams['axes.unicode_minus'] = False  # 用来正常显示负号# 绘图data.plot()# 图片展示plt.show()# 绘制自相关图plot_acf(data).show()# 绘制偏自相关图plot_pacf(data).show()
平稳性检测print(u'原始序列的ADF检验结果为:', ADF(data[u'deal_data']))

下图为时序图:
请添加图片描述
下图为自相关图:
请添加图片描述
请添加图片描述
截尾

---------------------ADF检验结果----------------------
ADF Statistic(T-value): -1.065624
p-value: 0.728584
Lags Used: 11
Observations Used: 43
Critical Values:1%: -3.5935%: -2.93210%: -2.604
====================================================

由于p值为0.728584,不能拒绝原假设(数据不稳定)。

4,对原始数据进行差分,让数据变成平稳时间序列;

    tmp_data = data.diff().dropna()  #一阶差分并去空列D_data = tmp_data.diff().dropna()  #二阶差分tmp_data.columns = [u'用户转化率差分'] # 取列名D_data.columns = [u'用户转化率差分']# 时序图D_data.plot()plt.show()# 自相关图plot_acf(D_data).show()# 偏自相关图plot_pacf(D_data).show()print(u'一阶差分序列的ADF检验结果为:', ADF(tmp_data[u'用户转化率差分']))  # 平稳性检测print(u'二阶差分序列的ADF检验结果为:', ADF(D_data[u'用户转化率差分']))  # 平稳性检测

下图时序图(从左到右,分别为原始数据,一阶差分,二阶差分):

可以看出数据逐渐趋于有规律
请添加图片描述
下图自相关图(从左到右,分别为原始数据,一阶差分,二阶差分):
请添加图片描述
下图偏自相关图(从左到右,分别为原始数据,一阶差分,二阶差分):
请添加图片描述
ADF检验结果:

一阶差分序列的ADF检验结果为: (-2.075566084251588, 0.25445240835460714, 11, 42, {'1%': -3.596635636000432, '5%': -2.933297331821618, '10%': -2.6049909750566895}, 891.9896110441426)
二阶差分序列的ADF检验结果为: (-5.158293394368312, 1.0689898139736479e-05, 10, 42, {'1%': -3.596635636000432, '5%': -2.933297331821618, '10%': -2.6049909750566895}, 874.5861617359358)

可以看的二阶差分后的数据的p值远远小于0.1,即可以拒绝原假设(数据不稳定),得到数据数据稳定。

5,差分序列的白噪声检验;

    print(u'差分序列的白噪声检验结果为:', acorr_ljungbox(D_data, lags=1))  # 返回统计量和p值

运行结果

二阶差分序列的白噪声检验结果为:      lb_stat     lb_pvalue
1  33.952495  5.647422e-09

这里得到的p值为5.647422e-09,即拒绝原假设,序列不是白噪声。

6,确定ARIMA的p,q参数;

方法一(使用BIC矩阵):

    pmax = int(len(D_data) / 10)  # 一般阶数不超过length/10qmax = int(len(D_data) / 10)  # 一般阶数不超过length/10bic_matrix = []  # BIC矩阵# 差分阶数diff_num = 2for p in range(pmax):tmp = []for q in range(qmax):try:tmp.append(ARIMA(D_data, order=(p, diff_num, q)).fit().bic)except Exception as e:print(e)tmp.append(None)bic_matrix.append(tmp)bic_matrix = pd.DataFrame(bic_matrix)  # 从中可以找出最小值p, q = bic_matrix.stack().idxmin()  # 先用stack展平,然后用idxmin找出最小值位置。print(u'BIC最小的p值和q值为:%s、%s' % (p, q))

得到结果:

BIC最小的p值和q值为:13

方法二:使用AIC和BIC准则定阶

    AIC = sm.tsa.stattools.arma_order_select_ic(D_data, max_ar=4, max_ma=4, ic='aic')['aic_min_order']# BICBIC = sm.tsa.stattools.arma_order_select_ic(D_data, max_ar=4, max_ma=4, ic='bic')['bic_min_order']print('---AIC与BIC准则定阶---')print('the AIC is{}\nthe BIC is{}\n'.format(AIC, BIC), end='')p = BIC[0]q = BIC[1]diff_num = 2
---AIC与BIC准则定阶---
the AIC is(0, 2)
the BIC is(0, 2)

7,模型预测;

    model = ARIMA(data, order=(p, diff_num, q)).fit()  # 建立ARIMA(p, diff+num, q)模型print('模型报告为:\n', model.summary())print("预测结果:")print(model.forecast(forecast_num))print("预测结果(详细版):\n")forecast = model.get_forecast(steps=forecast_num)table = pd.DataFrame(forecast.summary_frame())print(table)

8,模型检验

def Model_checking(model):# 残差检验:检验残差是否服从正态分布,画图查看,然后检验# 绘制残差图model.resid.plot(figsize=(10, 3))plt.title("残差图")plt.show()print('------------残差检验-----------')# model.resid:残差 = 实际观测值 – 模型预测值print(stats.normaltest(model.resid))# QQ图看正态性qqplot(model.resid, line="q", fit=True)plt.title("Q-Q图")plt.show()# 绘制直方图plt.hist(model.resid, bins=50)plt.show()# 进行Jarque-Bera检验:判断数据是否符合总体正态分布jb_test = sm.stats.stattools.jarque_bera(model.resid)print("==================================================")print('------------Jarque-Bera检验-----------')print('Jarque-Bera test:')print('JB:', jb_test[0])print('p-value:', jb_test[1])print('Skew:', jb_test[2])print('Kurtosis:', jb_test[3])# 残差序列自相关:残差序列是否独立print('------DW检验:残差序列自相关----')print(sm.stats.stattools.durbin_watson(model.resid.values))

结果:

------------残差检验-----------
NormaltestResult(statistic=4.4959826117374515, pvalue=0.10561115214326909)------------Jarque-Bera检验-----------
Jarque-Bera test:
JB: 4.0642468241648775
p-value: 0.13105693759455012
Skew: 0.33412880151714236
Kurtosis: 4.151920700073933------DW检验:残差序列自相关----
1.71022123825392

请添加图片描述

请添加图片描述

由检测结果可以看出,模式良好。

3.2 完整代码

from __future__ import annotations
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import statsmodels.api as sm
from statsmodels.tsa.stattools import adfuller as ADF
from statsmodels.stats.diagnostic import acorr_ljungbox
from statsmodels.graphics.tsaplots import plot_acf, plot_pacf #ACF与PACF
from statsmodels.tsa.arima.model import ARIMA #ARIMA模型
from statsmodels.graphics.api import qqplot  #qq图
from scipy import statsimport warnings
warnings.filterwarnings("ignore")# 绘图设置(适用于mac)
# plt.rcParams['font.sans-serif'] = ['SimHei']
plt.rcParams['font.sans-serif'] = ['Arial Unicode MS']  # 用来正常显示中文标签
plt.rcParams['axes.unicode_minus'] = False  # 用来正常显示负号# 模型检测
def Model_checking(model) -> None:# 残差检验:检验残差是否服从正态分布,画图查看,然后检验print('------------残差检验-----------')# model.resid:残差 = 实际观测值 – 模型预测值print(stats.normaltest(model.resid))# QQ图看正态性qqplot(model.resid, line="q", fit=True)plt.title("Q-Q图")plt.show()# 绘制直方图plt.hist(model.resid, bins=50)plt.show()# 进行Jarque-Bera检验:判断数据是否符合总体正态分布jb_test = sm.stats.stattools.jarque_bera(model.resid)print("==================================================")print('------------Jarque-Bera检验-----------')print('Jarque-Bera test:')print('JB:', jb_test[0])print('p-value:', jb_test[1])print('Skew:', jb_test[2])print('Kurtosis:', jb_test[3])# 残差序列自相关:残差序列是否独立print("==================================================")print('------DW检验:残差序列自相关----')print(sm.stats.stattools.durbin_watson(model.resid.values))# 使用BIC矩阵计算p和q的值
def cal_pqValue(D_data, diff_num=0) -> List[float]:# 定阶pmax = int(len(D_data) / 10)  # 一般阶数不超过length/10qmax = int(len(D_data) / 10)  # 一般阶数不超过length/10bic_matrix = []  # BIC矩阵# 差分阶数diff_num = 2for p in range(pmax + 1):tmp = []for q in range(qmax + 1):try:tmp.append(ARIMA(D_data, order=(p, diff_num, q)).fit().bic)except Exception as e:print(e)tmp.append(None)bic_matrix.append(tmp)bic_matrix = pd.DataFrame(bic_matrix)  # 从中可以找出最小值p, q = bic_matrix.stack().idxmin()  # 先用stack展平,然后用idxmin找出最小值位置。print(u'BIC最小的p值和q值为:%s、%s' % (p, q))return p, q# 计算时序序列模型
def cal_time_series(data, forecast_num=3) -> None:# 绘制时序图data.plot()# 存储图片plt.savefig('/Users/mac/Downloads/1.png')plt.show()# 绘制自相关图plot_acf(data).show()# 绘制偏自相关图plot_pacf(data).show()# 时序数据平稳性检测original_ADF = ADF(data[u'deal_data'])print(u'原始序列的ADF检验结果为:', original_ADF)# 对数序数据进行d阶差分运算,化为平稳时间序列diff_num = 0 # 差分阶数diff_data = data     # 差分数序数据ADF_p_value = ADF(data[u'deal_data'])[1]while  ADF_p_value > 0.01:diff_data = diff_data.diff(periods=1).dropna()diff_num = diff_num + 1ADF_result = ADF(diff_data[u'deal_data'])ADF_p_value = ADF_result[1]print("ADF_p_value:{ADF_p_value}".format(ADF_p_value=ADF_p_value))print(u'{diff_num}差分的ADF检验结果为:'.format(diff_num = diff_num), ADF_result )# 白噪声检测print(u'差分序列的白噪声检验结果为:', acorr_ljungbox(diff_data, lags=1))  # 返回统计量和p值# 使用AIC和BIC准则定阶q和p的值(推荐)AIC = sm.tsa.stattools.arma_order_select_ic(diff_data, max_ar=4, max_ma=4, ic='aic')['aic_min_order']BIC = sm.tsa.stattools.arma_order_select_ic(diff_data, max_ar=4, max_ma=4, ic='bic')['bic_min_order']print('---AIC与BIC准则定阶---')print('the AIC is{}\nthe BIC is{}\n'.format(AIC, BIC), end='')p = BIC[0]q = BIC[1]# 使用BIC矩阵来计算q和p的值# pq_result = cal_pqValue(diff_data, diff_num)# p = pq_result[0]# q = pq_result[1]# 构建时间序列模型model = ARIMA(data, order=(p, diff_num, q)).fit()  # 建立ARIMA(p, diff+num, q)模型print('模型报告为:\n', model.summary())print("预测结果:\n", model.forecast(forecast_num))print("预测结果(详细版):\n")forecast = model.get_forecast(steps=forecast_num)table = pd.DataFrame(forecast.summary_frame())print(table)# 绘制残差图diff_data.plot(color='orange', title='残差图')model.resid.plot(figsize=(10, 3))plt.title("残差图")# plt.savefig('/Users/mac/Downloads/1.png')plt.show()# 模型检查Model_checking(model)if __name__ == '__main__':# 数据测试1:need_data = {'2016-02': 44964.03, '2016-03': 56825.51, '2016-04': 49161.98, '2016-05': 45859.35,'2016-06': 45098.56,'2016-07': 45522.17, '2016-08': 57133.18, '2016-09': 49037.29, '2016-10': 43157.36,'2016-11': 48333.17,'2016-12': 22900.94,'2017-01': 67057.29, '2017-02': 49985.29, '2017-03': 49771.47, '2017-04': 35757.0, '2017-05': 42914.27,'2017-06': 44507.03, '2017-07': 40596.51, '2017-08': 52111.75, '2017-09': 49711.18,'2017-10': 45766.09,'2017-11': 45273.82, '2017-12': 22469.57,'2018-01': 71032.23, '2018-02': 37874.38, '2018-03': 44312.24, '2018-04': 39742.02,'2018-05': 43118.38,'2018-06': 33859.69, '2018-07': 38910.89, '2018-08': 39138.42, '2018-09': 37175.03,'2018-10': 44159.96,'2018-11': 46321.72, '2018-12': 22410.88,'2019-01': 61241.94, '2019-02': 31698.6, '2019-03': 44170.62, '2019-04': 47627.13, '2019-05': 54407.37,'2019-06': 50231.68, '2019-07': 61010.29, '2019-08': 59782.19, '2019-09': 57245.15,'2019-10': 61162.55,'2019-11': 52398.25, '2019-12': 15482.64,'2020-01': 38383.97, '2020-02': 26943.55, '2020-03': 57200.32, '2020-04': 49449.95,'2020-05': 47009.84,'2020-06': 49946.25, '2020-07': 56383.23, '2020-08': 60651.07}data = {'time_data': list(need_data.keys()), 'deal_data': list(need_data.values())}df = pd.DataFrame(data)df.set_index(['time_data'], inplace=True)  # 设置索引cal_time_series(df, 7) # 模型调用# 数据测试2(从excel中读取):# path = '/Users/mac/Downloads/时间序列模型测试数据.xlsx'# df = pd.read_excel(path)# df.rename(columns={'data': 'deal_data', 'time': 'time_data'}, inplace=True)# df.set_index(['time_data'], inplace=True)  # 设置索引# cal_time_series(df, 7) # 模型调用

4 测试数据和完整代码

网盘链接:提取码: o8po

参考文章

图灵追慕者
SPSSPRO​
Github上facebook的prophet项目
Yuting_Sunshine
一眉师傅
English Chan
Sany 何灿
机器之心
seriesc
北京大学《金融时间序列分析讲义》
Foneone
statsmodels中文官网API

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/621146.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Django之rest_framework(四)

扩展的视图类介绍 rest_framework提供了几种后端视图(对数据资源进行增删改查)处理流程的实现,如果需要编写的视图属于这几种,则视图可以通过继承相应的扩展类来复用代码,减少自己编写的代码量 官网:3 - Class based views - Django REST framework rest_framework.mixi…

Matlab|基于广义Benders分解法的综合能源系统优化规划

目录 1 主要内容 广义benders分解法流程图&#xff1a; 优化目标&#xff1a; 约束条件&#xff1a; 2 部分代码 3 程序结果 4 下载链接 1 主要内容 该程序复现文章《综合能源系统协同运行策略与规划研究》第四章内容基于广义Benders分解法的综合能源系统优化规划&…

Redis消息队列-基于PubSub的消息队列

7.3 Redis消息队列-基于PubSub的消息队列 PubSub&#xff08;发布订阅&#xff09;是Redis2.0版本引入的消息传递模型。顾名思义&#xff0c;消费者可以订阅一个或多个channel&#xff0c;生产者向对应channel发送消息后&#xff0c;所有订阅者都能收到相关消息。 SUBSCRIBE …

阿里云Centos7下编译glibc

编译glibc 原来glibc版本 编译前需要的环境: CentOS7 gcc 8.3.0 gdb 8.3.0 make 4.0 binutils 2.39 (ld -v) python 3.6.8 其他看INSTALL, 但有些版本也不易太高 wget https://mirrors.aliyun.com/gnu/glibc/glibc-2.37.tar.gz tar -zxf glibc-2.37.tar.gz cd glibc-2.37/ …

43.基于SpringBoot + Vue实现的前后端分离-疫苗发布和接种预约系统(项目 + 论文)

项目介绍 本次使用Java技术开发的疫苗发布和接种预约系统&#xff0c;就是运用计算机来管理疫苗接种预约信息&#xff0c;该系统是可以实现论坛管理&#xff0c;公告信息管理&#xff0c;疫苗信息管理&#xff0c;医生管理&#xff0c;医院信息管理&#xff0c;用户管理&#x…

状态模式【行为模式C++】

1.概述 状态模式是一种行为设计模式&#xff0c; 让你能在一个对象的内部状态变化时改变其行为&#xff0c; 使其看上去就像改变了自身所属的类一样。 2.结构 State(抽象状态类)&#xff1a;定义一个接口用来封装与上下文类的一个特定状态相关的行为&#xff0c;可以有一个或多…

PCL中VTK场景添加坐标系轴显示

引言 世上本没有坐标系&#xff0c;用的人多了&#xff0c;便定义了坐标系统用来定位。地理坐标系统用于定位地球上的位置&#xff0c;PCL点云库可视化窗口中的坐标系统用于定位其三维世界中的位置。本人刚开始接触学习PCL点云库&#xff0c;计算机图形学基础为零&#xff0c;…

湖南开放大学学子的智慧学习伴侣

在现代社会&#xff0c;学习已经成为人们不可或缺的一部分。然而&#xff0c;对于湖南开放大学的学子们来说&#xff0c;由于远程教育的特殊性&#xff0c;他们面临着更大的学习挑战。幸运的是&#xff0c;湖南开放大学的学子们现在可以借助一款强大的学习伴侣——电大搜题微信…

基于Python的卷积网络的车牌识别系统,附源码

博主介绍&#xff1a;✌程序员徐师兄、7年大厂程序员经历。全网粉丝12w、csdn博客专家、掘金/华为云/阿里云/InfoQ等平台优质作者、专注于Java技术领域和毕业项目实战✌ &#x1f345;文末获取源码联系&#x1f345; &#x1f447;&#x1f3fb; 精彩专栏推荐订阅&#x1f447;…

MySQL表空间管理与优化(8/16)

表空间管理和优化 innodb_file_per_table参数&#xff08;此参数在分区表章节中还会出现&#xff09;&#xff1a; 这个参数决定了InnoDB表数据的存储方式。当参数设置为ON时&#xff0c;每个InnoDB表的数据会单独存储在一个以.ibd为后缀的文件中&#xff0c;这有利于管理和回收…

【Qt 学习笔记】Qt常用控件 | 按钮类控件Radio Button的使用及说明

博客主页&#xff1a;Duck Bro 博客主页系列专栏&#xff1a;Qt 专栏关注博主&#xff0c;后期持续更新系列文章如果有错误感谢请大家批评指出&#xff0c;及时修改感谢大家点赞&#x1f44d;收藏⭐评论✍ Qt常用控件 | 按钮类控件Radio Button的使用及说明 文章编号&#xff…

接口测试练习步骤

在接触接口测试过程中补了很多课&#xff0c; 终于有点领悟接口测试的根本&#xff1b; 偶是个实用派&#xff5e;&#xff0c;那么现实中没有用的东西&#xff0c;基本上我都不会有很大的概念&#xff1b; 下面给的是接口测试的统一大步骤&#xff0c;其实就是让我们对接口…

吴恩达llama课程笔记:第六课code llama编程

羊驼Llama是当前最流行的开源大模型&#xff0c;其卓越的性能和广泛的应用领域使其成为业界瞩目的焦点。作为一款由Meta AI发布的开放且高效的大型基础语言模型&#xff0c;Llama拥有7B、13B和70B&#xff08;700亿&#xff09;三种版本&#xff0c;满足不同场景和需求。 吴恩…

传世手游之冰雪传世_经典角色扮演PK类三职业传奇手游

传世手游之冰雪传世_经典角色扮演PK类三职业传奇手游_Linux服务端_通用视频架设教程_GM网页授权物品后台_苹果IOS安卓双端 源码仅供学习研究之用&#xff0c;请勿商用或者其他违法用途&#xff0c;产生其他后果与本站无关 下载地址&#xff1a;极速云

RISCV指令集体系简读之RV32M

RV32M向RV32I中添加了整数乘法和除法指令&#xff1b; RV32M具有有符号和无符号整数的除法指令&#xff1a;divide(div)和divide unsigned(divu)&#xff0c;它们将 商放入目标寄存器。在少数情况下&#xff0c;程序员需要余数而不是商&#xff0c;因此RV32M提供 remainder(rem…

软考126-上午题-【软件工程】-测试方法

一、测试方法 在软件测试过程中&#xff0c;应该为定义软件测试模板&#xff0c;即将特定的测试方法和测试用例设计放在一系列的测试步骤中。 软件测试方法分为&#xff1a;静态测试和动态测试。 1-1、静态测试。 静态测试是指被测试程序不在机器上运行&#xff0c;而是采用…

JAVAEE——网络初始

文章目录 网络发展史独立模式网络模式局域网LAN路由器的诞生 网络通信的基础IP地址端口号 认识协议OSI七层模型TCP/IP五层模型 网络发展史 独立模式 在原始的年代中电脑间想要通信需要两台电脑连接一根网线&#xff0c;但是一台电脑基本上只有一个接口。因此想要链接更多的电…

论文速读:Do Generated Data Always Help Contrastive Learning?

在对比学习领域&#xff0c;最近很多研究利用高质量生成模型来提升对比学习 给定一个未标记的数据集&#xff0c;在其上训练一个生成模型来生成大量的合成样本&#xff0c;然后在真实数据和生成数据的组合上执行对比学习这种使用生成数据的最简单方式被称为“数据膨胀”这与数据…

在Windows上配置VS Code GO语言开发环境

&#x1f49d;&#x1f49d;&#x1f49d;欢迎莅临我的博客&#xff0c;很高兴能够在这里和您见面&#xff01;希望您在这里可以感受到一份轻松愉快的氛围&#xff0c;不仅可以获得有趣的内容和知识&#xff0c;也可以畅所欲言、分享您的想法和见解。 推荐:「stormsha的主页」…

【TEE论文】IceClave: A Trusted Execution Environment for In-Storage Computing

摘要 使用现代固态硬盘&#xff08;SSD&#xff09;的存储中计算使开发人员能够将程序从主机转移到SSD上。这被证明是缓解I/O瓶颈的有效方法。为了促进存储中计算&#xff0c;已经提出了许多框架。然而&#xff0c;其中很少有框架将存储中的安全性作为首要任务。具体而言&…